SKIN DOSE DIFFERENCES BETWEEN IMRT/VMAT AND BETWEEN BOOST/INTEGRATED TREATMENT REGIMENS FOR TREATING HEAD AND NECK, PROSTATE AND BRAIN CANCERS

Gregory P. Penoncello MS and George X. Ding, PhD
Department of Radiation Oncology, Vanderbilt University School of Medicine
Purpose of the Study

- Evaluate dose to skin between VMAT and IMRT treatment techniques for targets in the head and neck, pelvis and brain
- Determine if the treatment dose and fractionation regimen impacts the skin dose between traditional sequential boost and integrated boost regimens
Materials and Methods

• This was a retrospective study using Varian Eclipse Treatment Planning System
• anisotropic analytical algorithm (AAA) v11
Patients

- 19 Patients selected
 - 9 head and neck
 - Involved supraclavicular regions
 - 5 prostate
 - 3 with involved nodes
 - 5 brain
 - Various locations, large laterally located
- Each patient planned with VMAT and IMRT to clinically acceptable plans
 - Same target objective and organ constraints
 - No extra sparing to skin with either method
- Note orientation described: 180° is gantry pointed towards floor (AP beam on supine oriented patient)
Head and Neck Plans

- 6MV
- VMAT → 2 Full Arcs
- IMRT → 7 beams ranging from 20° – 340° (more anterior)
- 6 traditional sequential boost:
 - 5040cGy in 25 fx → boost to 6930cGy in 33fx
- 3 integrated boost (1 replan w/ traditional boost):
 - Low target: 5400-5600cGy, Med Target: 6300cGy, high target: 7000cGy in 35fx
Prostate Plans

- Planned using 10MV photons
- VMAT → 2 full arcs
- IMRT → 7 fields spaced by 50° from 50°-350°
 - 1 plan w/o nodes used 5 field at 40°, 120°, 180°, 240° and 320°
- Primary Plans → 5040cGy in 28fx boost 7920cGy in 44fx
- 1 prostate bed → 7020cGy in 39fx
Brain Plans

- 6MV Photons
- VMAT \rightarrow 2 partial arcs $\sim 180^\circ$-210$^\circ$ long
- IMRT plans \rightarrow 5 fields various angles
 - Fields covered same angle range as arcs
 - 1 Plan had a noncoplanar beam
- Various prescriptions
 - 4500cGy in 25 fx \rightarrow 6000 cGy in 30 fx
Quantify Skin Dose

• Skin 5mm deep from surface on axial slices-PTV contours present
• Mean skin dose noted
• Maximum dose noted (2cc contiguous volume)
 • Dose volume contours made to visualize hottest region
 • Noted as $D_{2\text{contig}}$ (Head and Neck and Brain)
 • 5cc contiguous volume -> $D_{5\text{contig}}$ (Prostate)
• Head and Neck Skin Split into three sections
 • Skin on jaw → all but posterior skin (very low doses)
 • Skin on neck → all but posterior skin (very low doses)
 • Skin on shoulder → only anterior portion of skin (low doses)
Results Head and Neck

• In general VMAT reduced skin doses
• Largest difference in shoulder
 • Mean decreased by 142cGy (5.6%)
 • $D_{2contig}$ decreased by 268.9cGy (5.4%)
• Neck:
 • Mean decreased 142cGy (3.9%)
 • $D_{2contig}$ decreased by 98.4cGy (1.9%)
• Jaw:
 • Mean decreased by 123cGy (5.1%)
 • $D_{2contig}$ decreased by 256cGy (5.1%)
Integrated vs Traditional boost

- Traditional Boost plans had a decreased skin dose in shoulder
 - Specifically $D_{2\text{contig}}$ in shoulder region

- Shoulder:
 - Mean dose:
 - IMRT: 44cGy (1.6%)
 - VMAT: 43cGy (1.7%)
 - $D_{2\text{contig}}$:
 - IMRT: 1805cGy (28.9%)
 - VMAT: 1367cGy (24.0%)
<table>
<thead>
<tr>
<th>Patient</th>
<th>Shoulder</th>
<th>Neck</th>
<th>Jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>IMRT</td>
<td>VMAT</td>
<td>Difference</td>
</tr>
<tr>
<td>11</td>
<td>3206</td>
<td>2988</td>
<td>218</td>
</tr>
<tr>
<td>11 w/ boost*</td>
<td>3240</td>
<td>3030</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>2197</td>
<td>2134</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>2218</td>
<td>1978</td>
<td>240</td>
</tr>
<tr>
<td>14</td>
<td>2484</td>
<td>2223</td>
<td>261</td>
</tr>
<tr>
<td>15</td>
<td>2427</td>
<td>2679</td>
<td>-252</td>
</tr>
<tr>
<td>16</td>
<td>1897</td>
<td>1525</td>
<td>372</td>
</tr>
<tr>
<td>17†</td>
<td>3097</td>
<td>2895</td>
<td>202</td>
</tr>
<tr>
<td>18†</td>
<td>2514</td>
<td>2235</td>
<td>279</td>
</tr>
<tr>
<td>19†</td>
<td>2496</td>
<td>2578</td>
<td>-82</td>
</tr>
<tr>
<td>19‡</td>
<td>2077</td>
<td>2023</td>
<td>54</td>
</tr>
</tbody>
</table>

* primary plus boost plan
† integrated boost plan
‡ traditional boost plan
Head and Neck $D_{2\text{contig}}$ in cGy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Shoulder</th>
<th>Neck</th>
<th>Jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>IMRT</td>
<td>VMAT</td>
<td>Difference</td>
</tr>
<tr>
<td>11</td>
<td>4243</td>
<td>4141</td>
<td>102</td>
</tr>
<tr>
<td>11 w/ boost*</td>
<td>4243</td>
<td>4141</td>
<td>102</td>
</tr>
<tr>
<td>12</td>
<td>4823</td>
<td>4448</td>
<td>375</td>
</tr>
<tr>
<td>13</td>
<td>4265</td>
<td>4290</td>
<td>-25</td>
</tr>
<tr>
<td>14</td>
<td>4786</td>
<td>4541</td>
<td>245</td>
</tr>
<tr>
<td>15</td>
<td>4741</td>
<td>4605</td>
<td>136</td>
</tr>
<tr>
<td>16</td>
<td>4628</td>
<td>4510</td>
<td>118</td>
</tr>
<tr>
<td>17†</td>
<td>6837</td>
<td>6331</td>
<td>506</td>
</tr>
<tr>
<td>18†</td>
<td>6414</td>
<td>5676</td>
<td>738</td>
</tr>
<tr>
<td>19†</td>
<td>5458</td>
<td>5048</td>
<td>410</td>
</tr>
<tr>
<td>19‡</td>
<td>4619</td>
<td>4495</td>
<td>124</td>
</tr>
</tbody>
</table>

* primary plus boost plan
† integrated boost plan
‡ traditional boost plan
<table>
<thead>
<tr>
<th>Patient</th>
<th>Shoulder</th>
<th>Neck</th>
<th>Jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMRT</td>
<td>VMAT</td>
<td>Difference</td>
</tr>
<tr>
<td>11</td>
<td>4243</td>
<td>4141</td>
<td>102</td>
</tr>
<tr>
<td>11 w/ boost*</td>
<td>4243</td>
<td>4141</td>
<td>102</td>
</tr>
<tr>
<td>12</td>
<td>4823</td>
<td>4448</td>
<td>375</td>
</tr>
<tr>
<td>13</td>
<td>4265</td>
<td>4290</td>
<td>-25</td>
</tr>
<tr>
<td>14</td>
<td>4786</td>
<td>4541</td>
<td>245</td>
</tr>
<tr>
<td>15</td>
<td>4741</td>
<td>4605</td>
<td>136</td>
</tr>
<tr>
<td>16</td>
<td>4628</td>
<td>4510</td>
<td>118</td>
</tr>
<tr>
<td>17†</td>
<td>6837</td>
<td>6331</td>
<td>506</td>
</tr>
<tr>
<td>18†</td>
<td>6414</td>
<td>5676</td>
<td>738</td>
</tr>
<tr>
<td>19†</td>
<td>5458</td>
<td>5048</td>
<td>410</td>
</tr>
<tr>
<td>19‡</td>
<td>4619</td>
<td>4495</td>
<td>124</td>
</tr>
</tbody>
</table>

* primary plus boost plan
† integrated boost plan
‡ traditional boost plan
Integrated vs Traditional

- Integrated regimens \rightarrow higher skin dose to shoulders
- Ideas why:
 - Integrated boost \rightarrow higher prescription to target
 - $5400\text{cGy vs } 5040\text{cGy}$
 - Integrated boost \rightarrow larger field entire treatment course
 - More modulation, more scatter, more leakage
Results Prostate and Brain

- VMAT in general reduced skin dose
- Large difference in Contiguous Hotspot
 - Prostate $D_{5\text{contig}}$ reduction: 880cGy (36%)
 - Brain $D_{2\text{contig}}$ reduction: 235cGy (6.5%)
- Mean dose reduction not as large
 - Prostate reduction: 51cGy (5.5%)
 - Brain Reduction: 86cGy (4.4%)
Conclusions

• VMAT in general will reduce skin dose while providing similar target coverage and other OAR sparing
 • Particularly contiguous hotspot regions
 • Increase # of entry angles \rightarrow decrease hot spots
 • Not as much of advantage for partial arcs
 • Distance from target
 • Streaking effect for deep targets (Prostate plans, shoulders in Head & Neck plans)

• Using a traditional sequential boost regimen reduces contiguous hotspot in the shoulder region in head and neck patients
References

Special Thanks

• Dr. Jostin Crass DMP
• Wyndee Kirby MS
• Guozhen Luo MS
• Dr. Manuel Morales PhD
• Patricia Thompson CMD
• Drew Dellamonica MS
THANK YOU!
QUESTIONS?
Prostate Patient Skin Dose Differences in cGy

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Prescription</th>
<th>Mean Dose</th>
<th>$D_{5\text{contig}}$ Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IMRT</td>
<td>VMAT</td>
</tr>
<tr>
<td>1</td>
<td>1.8Gy*28fx</td>
<td>884</td>
<td>850</td>
</tr>
<tr>
<td>1 w/ boost*</td>
<td>1.8Gy*44fx</td>
<td>1085</td>
<td>1033</td>
</tr>
<tr>
<td>2</td>
<td>1.8Gy*28fx</td>
<td>981</td>
<td>912</td>
</tr>
<tr>
<td>3</td>
<td>1.8Gy*28fx</td>
<td>896</td>
<td>893</td>
</tr>
<tr>
<td>4</td>
<td>1.8Gy*44fx</td>
<td>869</td>
<td>810</td>
</tr>
<tr>
<td>5</td>
<td>1.8Gy*39fx</td>
<td>761</td>
<td>672</td>
</tr>
</tbody>
</table>

Skin mean doses, $D_{5\text{contig}}$ and the difference between IMRT and VMAT for pelvis located cases in cGy. *includes boost for the corresponding patient.
Brain Plan Skin Dose Differences in cGy

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Prescription</th>
<th>Mean Dose</th>
<th>D$_{2\text{contig}}$ Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IMRT</td>
<td>VMAT</td>
</tr>
<tr>
<td>6</td>
<td>2Gy*23fx</td>
<td>1210</td>
<td>1255</td>
</tr>
<tr>
<td>6 w/ boost*</td>
<td>2Gy*30fx</td>
<td>1467</td>
<td>1523</td>
</tr>
<tr>
<td>7</td>
<td>2Gy*23fx</td>
<td>1423</td>
<td>1499</td>
</tr>
<tr>
<td>8†</td>
<td>1.8Gy*25fx</td>
<td>1247</td>
<td>1342</td>
</tr>
<tr>
<td>9</td>
<td>2Gy*30fx</td>
<td>3352</td>
<td>2877</td>
</tr>
<tr>
<td>10</td>
<td>2Gy*25fx</td>
<td>2521</td>
<td>2208</td>
</tr>
</tbody>
</table>

Skin mean doses, D$_{2\text{contig}}$ and the difference between IMRT and RapidArc for Brain cases in cGy. *includes boost for the corresponding patient. †IMRT plan using a non-coplanar beam.
Things to Consider

- Skin sparing between primary and primary + boost were similar → reported difference between primary plans
- One patient in each region planned w/ primary and boost to show this
- Regions of skin inside PTV → not included
 - Directly adjacent included (increase mean and max)
Where to go from here

• More plans → better statistics

• Confirm calculated skin doses →
 • AAA ok for build up region? → AAA does well up to 2mm^{11,12}
 • Measurements
 • TLD, OSLD, Film
 • Monte Carlo Comparison
Capabilities of IMRT

- Create conformal dose distributions and avoid OARs1,2
- Complex tumor shapes
- Many Organs at risk (OARs) surrounding volumes
- Allow for dose escalation
- VMAT shown to produce similar dose distributions3,4,5,6

Nicolini \textit{et al.} \textit{Radiation Oncology} 2009 4:27
Inverse Planning

- Divides beam into beamlets
 - Beamlets weighted based on predetermined organ tolerance criteria
- Fluence pattern

IMRT vs VMAT

IMRT
- Fixed gantry beams
 - Streaking creating unwanted high dose regions in normal tissue can occur

VMAT
- uses dynamic MLCs, dynamic gantry rotation and varying dose rate
 - More entry angles \(\rightarrow \) spreads out dose more
 - Larger low dose regions, lower higher dose regions\(^8\)
Skin Dose

- Streaking in IMRT can create hotspots in skin
 - Skin reactions occur in head and neck patients with IMRT9
 - Hot spots in skin can occur in deep targets (pelvis)
- Can VMAT remove hotspots?
Plan Comparison

Patient 16

A: Axial dose plane VMAT
B: Coronal dose plane VMAT
C: Sagittal dose plane VMAT
D: Axial dose plane IMRT
E: Coronal dose plane IMRT
F: Sagittal dose plane for VMAT
DVH Comparison

Patient 16: Cyan: Skin Neck, Red Skin Jaw, Yellow, Skin Shoulder: Triangle = IMRT
Squares = VMAT

Patient 18: Cyan: Skin Neck, Red Skin Jaw, Yellow, Skin Shoulder
Triangle = VMAT
Squares = IMRT
Plan Comparison

Patient 5 A: Axial dose plane IMRT B: Coronal dose plane IMRT C: Sagittal dose plane IMRT D: Axial dose plane VMAT E: Coronal dose plane VMAT F: Sagittal dose plane VMAT plan
Patient 5: DVH plot: PTV (gold), CTV (orange), ROI skin dose (yellow) and $D_{5\text{contig}}$ contour (pink). VMAT - squares, IMRT - triangles
Patient 9: **A:** Axial dose plane VMAT **B:** Coronal dose plane VMAT **C:** Sagittal dose plane VMAT **D:** Axial dose plane IMRT **E:** Coronal dose plane IMRT **F:** Sagittal dose plane IMRT
Patient 9: DVH plot: PTV (magenta), CTV (violet), ROI skin dose (yellow) and $D_{2\text{contig}}$ contour (pink). VMAT- triangles, IMRT – squares.
Quantify Skin Dose

• Skin 5mm from surface circumferentially in axial slices - PTV contours present

• Mean skin dose

• Max dose in 5cc contiguous region
 • Noted as $d_{5\text{contig}}$
Quantify Skin Dose

• 5mm deep from surface axial slices → PTV present
 • 5°-10° past each partial arc
 • One noncoplanar static field → skin in beams eye view

• Mean Skin Dose

• $D_{2\text{contig}}$
Skin Dose Dependencies

- Increase # of entry angles \rightarrow decrease hot spots
 - Not as much of advantage for partial arcs
 - Brain \rightarrow noncoplanar beams

- Distance from target
 - Skin dose in general lower further from target
 - Streaking effect for deep targets (Prostate plans, shoulders in Head & Neck plans)